

www.uaic.ro

COURSE DESCRIPTION

1. Information about the programme

1.1 Institution of higher education			"Alexandru Ioan Cuza" University of Iasi				
1.2 Faculty		Faculty	Faculty of Economics and Business Administration				
1.3 Department			Depart	Department of Accounting, Business Information Systems and Statistics			
1.4 Field of study			Busines	Business Information Systems			
1.5 Level			Master	Master			
1.6 Study programme/ Qualification			Softwar	Software Development and Business Information Systems (SDBIS)			
2. Information about	ut the	course					
2.1 Course name		Data W	arehouses,	ehouses, Data Mining and Knowledge Discovery			
2.2 Course coordinator			lootumon D	anial HOMOC	IANU DED Habil		
2.3 Lab coordinator			lecturer D		IANU, PIID Habii.		
2.4 Year of study	Year of study I 2.5 II 2.		2.6 Type of	Ongoing assessment + Exam 2.2	7 Discipline	OB	
Semester			assessment	sta	atus		

* C – Compulsory / E - Elective

3. Total estimated time (hours alloted to didactic activity per semester)

3.1 Total number of hours per week	3	of which: 3.2	1	3.3 seminar/lab	2
		lecture			
3.4 Total number of hours in the	42	of which: 3.5	14	3.6 seminar/lab	28
curriculum		lecture			
Time distribution					Hours
Study of the handbook, coursebook, bibliography and notes					32
Additional research in the library, online and on the field					15
Preparation of seminars / lab homeworks / practical project modules					32
Tutorials					15
Assessment					14
Other activities					-
37 Total number of self-study 10	8				

3.7 Total number of self-study	108
hours	
3.9 Total number of hours per	150
semester	
3. 10 Number of credits	6

4. Prerequisites (if applicable)

	er equipres (ir)	app-	
4.1	curriculum-	٠	Databases (or similar)
based	1		
4.2	competence-	٠	Not applicable
based	1		

5. Conditions (if applicable)

	\mathbf{I} ····································
5.1. for lectures	Internet access, Video projector, Phisical / online attendance
5.2. for	• Oracle Virtual Box & the virtual machne at: tinyurl.com/z47h6y2
seminars/labs	

6. Assimilated specific competences

"ALEXANDRU IOAN CUZA" UNIVERSITY OF IASI (UAIC) FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION (FEAA) DEPARTMENT OF ACCOUNTING, BUSINESS INFORMATION SYSTEMS AND STATISTICS (CIES)

UNIVERSITATEA "ALEXANDRU IOAN CUZA" din IAŞI

www.uaic.ro

Professional competences	C4 Competence to integrate data, components and services in business systems and applications C4.1 Gaining detailed knowledge on all aspects of methodological and technological regarding the representation and persistence of data formats, the protocols and means of communication and integration of applications and services within distributed business information systems (1 credit) C4.2 Identification of technically and economically feasible solutions for data, applica-tions and services integration using existing methodologies and tools (1 credit) C5 Competence to manage IT projects and provide IT services C5.4 Development of decision and analysis models to be applied in the dynamic IT environment (2 credits) C6 Competence to manage and develop business processes using IT C6.2 Identification and orchestration of information processes in business using BPM (Business Process Management) tools (1 credit)
Transversal competences	CT1 – The ability to communicate and collaborate in teams of different professionals (0.5 credits) Continuous improvement of specific skills and knowledge towards approaching information systems CT3 – Continuous improvement of specific skills and knowledge towards approaching information systems, development of new software technologies and management of information systems (0.5 credits)

7. Discipline objectives (provided by the assimilated specific competences grid)

7.1 The general objective of the discipline	• To provide the knowledge of Data Warehouse (DWH) technologies in order to efficiently implement them in organizations, including programmatic operation.
7.2 Specific objectives	Basic knowldge of multidimensional data models and implementation methodologies
	Knowledge of main DWH products
	 Ability to design and implement a DWH
	Basic Knowledge of exploiting DWH technologies in organizations

8. Content

8 1 COURSE / LECTURE	Teaching	Observations
	methods	
Introduction to the DWH discipline including the presentation of		1 lecture
requirements and planning those at least 12 specific presentations		(2 hours)
(20%) of the master students teams about: 1.retail sales, 2.inventory,		
3.procurement, 4.order management, 5.accounting, 6.CRM, 7.HRM,		
8. financial services, 9. telecommunications, 10. transportation,		
11.education, 12.healthcare, 13.e-commerce, 14.insurance (20% in		
the final grade. Details: <u>tinyurl.com/jogo5uy</u> (Kimball&Ross,2013)		
Brief history (Inmon &Linstedt,2015). Data Architecture	PPT	1 lecture
(Kimball&Ross,2016) + time for 2 specific theoretical presentations	presentations,	(2 hours)
Dimensional Modeling (Kimball&Ross,2016)	examples,	1 lecture
+ time for 2 specific theoretical presentations	explanations,	(2 hours)
Technical Architecture Considerations (Kimball&Ross,2016)	conversations	1 lecture
+ time for 2 specific theoretical presentations	and	(2 hours)
Extract Transform Load and Data Quality (Kimball&Ross,2016)	questioning	1 lecture
+ time for 2 specific theoretical presentations		(2 hours)
DWH Lifecycle (Kimball&Ross,2013)		1 lecture
Trends in the evolution of DWH: Extended RDBMS		(2 hours)
Architecture (Kimball&Ross,2013), Pushing into the Future		

"ALEXANDRU IOAN CUZA" UNIVERSITY OF IASI (UAIC)

FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION (FEAA)

DEPARTMENT OF ACCOUNTING, BUSINESS INFORMATION SYSTEMS AND STATISTICS (CIES)

UNIVERSITATEA "ALEXANDRU IOAN CUZA" din IAŞI

PER LIBERTATEM AD VERITATEM

www.uaic.ro

(Reeves,2009), DWH 1.0 vs. 2.0 (Krishnan, 2013)		
Presenting and discussing the possible topics of the theoretical		1 lecture
evaluation + time for 2 specific theoretical presentations		(2 hours)
Ribliography:	L	(2 10013)
http://portal.feaa.uaic.ro/Master/SDBIS/an1/zsem2/depozite/Pages	/default.aspx	
01-Airinei, D., Depozite de date, Polirom, Jasi, 2002, portal feaa uaic, p	o/Master/SIA/anu	11/dd/Pages/default.aspx
02-Inmon.W.H.Linstedt, D., Data Architecture: A primer for the data s	cientist. MK. MA	. 2015 (tinyurl.com/h7dcq66)
03-Kimball, R., Ross, M., The Data Warehouse Toolkit Third Edition.	The Definitive G	uide to Dimensional Modeling,
John Wiley & Sons, New York, 2013 (tinyurl.com/jogo5uy)		
04-Kimball, R., Ross, M., The Kimball Group Reader. Relentlessly Pra	actical Tools for I	Data Warehousing and Business
Intelligence - Remastered Collection, Second Edition, Wiley, New Yo	rk, 2016 (<u>tinyurl.c</u>	<u>com/johox4v</u>)
05-Krishnan, K, Data Warehousing in The Age of Big Data, Morgan K	Kaufmann (MK), N	MA, 2013 (<u>tinyurl.com/zrjo75j</u>)
06-Reeves, L.L., A Manager's Guide to Data Warehousing, Wiley, New	w York, 2009 (<u>tin</u>	yurl.com/htsslk8)
07-https://drive.google.com/drive/folders/0B6qmI5LYdWSeS3Awbmh	<u>nILXZBdVU</u>	
8 2 LAB / SEMINAR	Teaching	
	methods	Observations
Creating a DWH project comparatively by using Microsoft SQL	demonstration,	3 labs
Server Analysis Services / SSAS (two examples starting from	tutorials,	(3rd in 3rd week for
different types of databases) and Excel Power Pivot add-in (plus	questioning	verifying the specific home
homework for teams of 2 members for 3rd week: your own examples		work – 6.66% in final grade)
-1/2 cubes, 3 dimensions, 3 hierarchies and 3 measures using SSAS)		
Creating SSAS MDX (MultiDimensional eXtension) queries to get	demonstration,	2 labs
data from a multidim. DWH cube (2 members team homework for	query	(2nd in 5th week for
5th week: your own examples with at least 6 queries)	execution,	verifying the specific home
	questioning	work – 6.66% in final grade)
Using ADOMD (Activex Data Object MultiDimensional) objects to	demonstration,	2 labs (2nd in 7th week for
members team homework for 7th week; your own examples with at	ovacution	(211d III / til week 101
least 2 forms including charts, grids and interactive controls for	executioning	work 6 66% in final grade)
customizing at least one generic support MDX query for each form)	questioning	work – 0.00% in final grade)
Creating Data Mining (DM) models starting from DWH cubes /	demonstration	2 labs
relational data sources / tables by using comparatively MS SSAS and	tutorials	(2nd in 9th week for
the Data Mining add-in and further verifying them by using different	questioning	verifying the specific home
types of regressions in STATA - https://tinyurl.com/y9t84cy.	questioning	work $-$ 6.66% in final grade)
StataMP.exe executable file after mounting and copying the content		······ 8
of the .iso file (2 members team homework for 9th week: your own		
examples with at least 4 models based on different algorithms)		
Creating SSAS DMX (DataMining eXtension) queries in relation to	demonstration,	2 labs
the DM models previously defined (2 members team homework for	query	(2nd in 11th week for
11th week: your own examples with at least 6 queries, 1/2 per	execution,	verifying the specific home
model)	questioning	work – 6.66% in final grade)
Using ADOMD objects to connect to DM models in Microsoft	demonstration,	2 labs
Visual Studio .NET 2013 (2 members team homework for 13th	code	(2nd in 13th week for

support DMX query for each from) "ALEXANDRU IOAN CUZA" UNIVERSITY OF IASI (UAIC) FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION (FEAA)

week: your own examples with at least 2 forms including charts,

grids and interactive controls for customizing at least one generic

DEPARTMENT OF ACCOUNTING, BUSINESS INFORMATION SYSTEMS AND STATISTICS (CIES)

execution,

questioning

verifying the specific home work -6.66% in final grade)

UNIVERSITATEA "ALEXANDRU IOAN CUZA" din IAŞI

PER LIBERTATEM AD VERITATEM

www.uaic.ro

Data Cubes in on-line environments (e.g. nesstar-	tutorials,	1 lab
<u>demo.nsd.uib.no/webview/</u>).Computing practical evaluation results.	questioning	(6 * 6.66% = 40%)
Bibliography:		

08-Airinei, D., Dopspinescu, O., Huiban, A., Aplicatii practice cu sisteme OLAP si Depozite de date, Editura Sedcom Libris, Iași, 2008

09-Sarka, D., et. al., Implementing a Data Warehouse with Microsoft SQL Server 2012. Training Kit, O'Reilly Media, Sebastopol, 2012 (tinyurl.com/jk6lclk)

10-Sheldon, B., et. al., Professional Visual Basic 2012 and .NET 4.5 Programming, John Wiley & Sons, Indianapolis, 2013 (tinyurl.com/hrb6j9u)

11-Homocianu, D., Sistemele de asistare a deciziilor in contextul societatii cunoasterii, (<u>ssrn.com/abstract=2384380</u>), Editura UAIC, Iasi, 2009

12- Homocianu, D., Teza de abilitare: Technologies for supporting decision making, Iasi, 2019, <u>tinyurl.com/y2gsptt4</u> 13-<u>http://www.nesstar.com/export/sites/default/doc/nesstar_cubes.pdf</u> 14-<u>https://drive.google.com/drive/folders/0B6qmI5LYdWSeM1ZXcm04VHJBc2M</u>

9. Corroboration of the discipline content with the expectations of epistemic community representatives,

professional associations as well as of representative employers in the programme related field.

The content of this discipline has been decided upon by taking into account both the curricula of some prestigious Western Universities and the demands of the economic environment provided by potential employers, either in the public or in the private IT companies.

10. Assessment

Type of activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Share of final grade
Practical ongoing evaluation regarding the development of support components for a DWH based app.prototype	real-world application, complexity, validity and originality	Six face-to-face lab presentations of the homework about: the design of DWHcubes & DM models implemented, corresponding MDX & DMX queries and app.prototypes (e.gNET forms bound to multidim.cubes & mining models) -weeks No.: 3,5,7,9,11 & 13. Both queries & apps' sources and presentations (video captures of their execution) sent before the begining of the weeks No.3,5,7,9,11 and 13. The archives should be electronically sent via <u>https://wetransfer.com/</u> (<u>NOT</u> e-mail with attach) at: daniel.homocianu@uaic.ro	40% (6 * 6.66%)
Theoretical evaluation of presentations during lecture hours (14 themes on domains, section 8.1, pp.2)	format, validity of sources, consistent pro- or-cons arguments, controversial theme and originality of comments and conclusions	Theoretical presentations (.ppt/.pptx/.pdf) delivered in real-time (presented and debated during lecture hours) or accompanied by audio&video narration (besides .ppt/.pptx/.pdf). The archives should be electronically sent via https://wetransfer.com/ (<u>NOT</u> e-mail with attach) at least a week before, at: daniel homocianu@uaic.ro	20%

"ALEXANDRU IOAN CUZA" UNIVERSITY OF IASI (UAIC) FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION (FEAA) DEPARTMENT OF ACCOUNTING, BUSINESS INFORMATION SYSTEMS AND STATISTICS (CIES)

www.uaic.ro

Theoretical exam based on answers to questions	solid theoretical knowledge of DWH applied in real-world scenarios	Final theoretical evaluation starting from at least ten questions (online survey)	40%		
10.6 Minimum performance	ce standard				
 Design and implement a DWH cube, 4 DM models and corresponding application prototypes with dynamic and interactive user interface components to programmatically query them (MDX&DMX); The resulting average of those 6 face-to-face lab modules/homeworks' scores (section 8.2, pp.3) should be >= 5; Each such individual score from those six above is: >= 1 and <=10 when presenting the homework in time (corresponding week / another week in advance); 					
 The grade for the theoretical exam must be >= 5. The final grade must be >= 5. 					
Dete of converted on	C	ľ			

Date of completion
09/22/2020Course and lab coordinator
lecturer Daniel HOMOCIANU,
PhD Habil.Date of aproval within
the department
09/25/2020Head of the CIES Department
professor Florin DUMITRIU, PhD

